🌕 Gate 广场 · 中秋创作激励 Day 8 赏金话题公布- #XRP ETF上线# !
创作点亮中秋,带热门话题发帖,瓜分 $5,000 中秋好礼!🎁
立即报名查看详情 👉 https://www.gate.com/campaigns/1953
💝 新用户首次发帖并完成互动任务,即可瓜分 $600 新人奖池!
🔥 Day 8 热门话题:XRP ETF上线
REX-Osprey XRP ETF(XRPR)本周确认上线!XRPR 将成为首档追踪第三大加密货币 XRP 表现的现货 ETF,由 REX-Osprey 推出(同时也是 SSK 背后团队)。据彭博高级 ETF 分析师消息,XRPR 将与狗狗币 ETF(DOJE)一同于本周四登场,这档 ETF 对 XRP 意味着什么?是推动机构资金进场的转折点,还是仅仅带来短期炒作?
发帖建议:
1️⃣ 分享你对 #XRP# ETF 上线的第一反应与看法。
2️⃣ 分析 XRP #ETF# 对 XRP 价格及流动性的短期影响。
3️⃣ 结合比特币、以太坊 ETF 过往案例,谈谈 XRP ETF 是否可能成为资金流入新焦点。
快带上 #XRP ETF上线# 和 #Gate广场创作点亮中秋# 发帖,内容越多越优质,越有机会赢取 $5,000 中秋好礼!
长文本信息准确率超过 ChatGPT,Meta 提出降低大模型幻觉新方法
来源:量子位
大模型的幻觉问题,又有新的解决方法了!
Meta AI实验室提出了一种“分而治之”的解决方案。
有了这个方案,Llama-65B输出的信息准确率提升了一倍,甚至超过了ChatGPT。
Meta此次提出的“验证链”(CoVe),是与“思维链”(CoT)相似的一种链式方法。
区别在于,“step-by-step”的思维链更关注逻辑推理,而验证链更注重事实信息。
有网友看了之后发现,这个验证链很像是自己用ChatGPT写代码时的一种科学方法:
拆解答案,分而治之
验证链的核心思想,是把要验证的一大段内容,拆解成一个个小的问题,具体流程是这样的:
首先,模型会根据用户提出的问题照常生成回复。
接着,根据生成的回复内容,针对其中的各项信息,生成一系列的验证问题。
然后让模型自行回答其所提出的这些问题,并根据结果对初始答案进行调整,得到最终结果。
举个简单的例子,假如想询问模型19世纪美墨战争的主要原因是什么。
模型回答了事件发生的时间,以及在这之前都发生了什么事。
于是,模型发现自己提到的一项内容时间相差太远,调整后给出了最终的答案。
这四种模式越来越细化,准确率也是越来越高。
那么为什么拆分提问就能提高模型的准确性呢?
首先是因为拆解后的问题比整体任务更容易,论述题变成了问答甚至选择、判断题,问题简单了,准确率也就提升了。
此外,把问题分解可以让模型真正重新思考,而不是反复地重复错误答案。
那么,验证链方式的效果究竟如何呢?
信息准确率超过ChatGPT
为了探究这一问题,研究人员用Llama进行了测试,测试任务一共有三项。
首先是信息列举,比如列举出出生于某地、从事某行业的名人。
这项任务中,研究人员一共测试了两个数据集——简单一些的Wikidata和从难一些的Wiki-Category list(从维基百科中提取)。
接下来是“闭域问答”题,研究人员从MultiSpanQA数据集中抽取多个不连续信息进行挖空提问。
比如“谁在哪一年创建了世界上第一家出版社”(答案是Johannes Gutenberg, 1450)。
结果,Cove也为Llama带来了20%左右的准确度提升。
结果在Factor+Reviese模式下,准确率不仅比无验证链模式大幅提高,还超过了ChatGPT。
论文地址: