轉發原文標題:《Metrics Ventures研報 | 從V神文章出發,Crypto×AI有哪些值得關注的細分賽道?》
去中心化是區塊鏈所維護的共識,確保安全性是核心思想,而開源是從密碼學角度讓鏈上行爲具備上述特點的關鍵基礎。在過去幾年中,這個方式在區塊鏈的幾輪變革中是適用的,但是當人工智能參與其中後,情況發生一些變化。
試想通過人工智能來設計區塊鏈或者應用的架構,那麼模型就有開源的必要,但是如此一來,會暴露其在對抗性機器學習中的脆弱性;反之則喪失了去中心化性。 因此,我們有必要思考在當前區塊鏈或者應用中加入人工智能時,以何種方式,怎樣的深度去完成結合。
來源:DE UNIVERSITY OF ETHEREUM
在@ueth"> DE UNIVERSITY OF ETHEREUM 的 When Giants Collide: Exploring the Convergence of Crypto x AI一文中,闡述了人工智能和區塊鏈在核心特質上的差異。如上圖所示,人工智能的特點是:
區塊鏈在這5點上,和人工智能相比是完全相反的。 這也是Vitalik該文的真正論點,如果人工智能和區塊鏈結合,那麼誕生的應用在數據所有權,透明度,貨幣化能力,耗能成本等方面應作出怎樣的取舍,又需要誕生哪些基礎設施來保障二者的有效結合。
Vitalik按照上述準則以及自身的思考,將人工智能與區塊鏈結合而成的應用分爲4大類:
其中,前三種主要是AI引入Crypto世界的三種方式,代表了從淺到深的三種層次,根據筆者的理解,這種劃分代表了AI對人類決策的影響程度,並由此爲整個Crypto引入了不同程度的系統風險:
最後,第四類項目致力於利用Crypto的特性創造更好的人工智能,正如前文所說,中心化、低透明度、耗能、壟斷性和貨幣屬性弱,都可以天然地通過Crypto的屬性去中和。盡管許多人對Crypto能否對人工智能的發展產生影響力抱有懷疑,但通過去中心化的力量去影響現實世界一直是Crypto最迷人的敘事,這一賽道也憑藉其宏大構想成爲AI賽道炒作最熱烈的部分。
在AI參與的機制中,激勵的最終來源來自於人類輸入的協議。在AI成爲接口,甚至成爲規則之前,我們往往需要對不同AI的表現進行評估,使AI參與到一個機制中,最終通過一個鏈上機制獲得獎勵或受到懲罰。
AI作爲參與者,相比於作爲接口和規則來說,對用戶和整個系統的風險性基本可以忽略不計,可以說是AI開始深度影響用戶決策和行爲前的必經階段,因此人工智能與區塊鏈在這一層的融合所需要的成本和取舍相對較小,也是V神認爲現在具有高度可落地性的一類產品。
從廣義和實現程度上來說,現在的AI應用多屬於這一類別,比如AI賦能的trading bot和chatbot等,目前的落地程度還很難實現AI作爲接口甚至是規則的作用,用戶正在不同的bot中進行比較和逐步優化,加密用戶也尚未養成使用AI應用的行爲習慣。在V神的文章中,也將Autonomous Agent歸爲這一類。
但從狹義和遠期願景上來說,我們傾向於對AI應用或AI Agent進行更爲細致的劃分,因此在這一類目下,我們認爲具有代表性的細分賽道包括:
從某種程度上說,AI遊戲都可以被歸爲這個類別,玩家通過與AI交互,並訓練自己的AI角色,使得AI角色更符合個人的需求,如更貼合個人的喜好或者在遊戲機制中更具有戰鬥力和競爭力。遊戲是AI在切入現實世界前的一個過渡階段,也是目前落地風險性較低、最容易被普通用戶理解的一個賽道,標志性的項目如AI Arena、Echelon Prime、Altered State Machine等。
預測能力是AI進行未來決策和行爲的基礎,在AI模型被用於實際預測前,預測競賽在更高等級上對AI模型的表現進行比較,通過代幣爲數據科學家/AI模型提供激勵,這對於整個Crypto×AI的發展具有積極意義——通過激勵不斷開發效率和性能更強、更適合crypto世界的模型和應用,在AI對決策和行爲發揮更深刻影響前,創建出更優質、更安全的產品。正如V神所說,預測市場是一個強大的原語,可以拓展到更多其他類型的問題。這一賽道中的標志性項目包括:Numerai和Ocean Protocol。
Numerai:Numerai是一個已經運行了很久的數據科學競賽,數據科學家根據歷史的市場數據(由Numerai提供)訓練機器學習模型來預測股市,並質押模型和NMR代幣進行錦標賽,表現較好的模型將獲得NMR代幣激勵,較差模型的質押代幣則會被銷毀。截止2024年3月7日,共有6,433個模型被質押,協議共計向數據科學家提供了$75,760,979的激勵。Numerai正在激勵全球數據科學家合作來構建新型對沖基金,目前已發布的基金包括Numerai One和Numerai Supreme。Numerai的路徑:市場預測競賽→衆包預測模型→基於衆包模型的新型對沖基金。
Ocean Protocol:Ocean Predictoor正在關注預測,開始於加密貨幣走勢的衆包預測。玩家可以選擇運行Predictoor bot或Trader bot,Predictoor bot使用AI模型對下一個時間點(比如五分鍾後)的加密貨幣(如BTC/USDT)價格進行預測,並質押一定數量的$OCEAN,協議將根據質押量加權計算出全局預測,Traders購買預測結果並可以根據其進行交易,在預測結果準確率較高時,Traders可以從中獲利,預測錯誤的Predictoor將會被罰沒,而預測正確的則可以獲得這部分代幣和Traders的購買費用作爲獎勵。3月2日,Ocean Predictoor在媒體上公布了最新方向——World-World Model(WWM),開始探索對天氣、能源等現實世界的預測。
AI可以幫助用戶用簡單易懂的語言理解正在發生的事情,充當用戶在crypto世界的導師,並對可能的風險進行提示,以降低Crypto的使用門檻和用戶風險,提高用戶體驗。具體可實現的產品的功能很豐富,如錢包交互時的風險提示、AI驅動的意圖交易、能夠回答普通用戶crypto問題的AI Chatbot等等。對受衆羣體進行擴大,除了普通用戶,開發者、分析師等等在內的幾乎所有羣體,都將成爲AI的服務對象。
讓我們再次重申這些項目的共同點:尚未代替人類執行某些決策和行爲,但正在利用AI模型爲人類提供輔助決策和行爲的信息和工具。從這一層開始,AI作惡的風險已經開始暴露在系統中——可以通過提供錯誤的信息來幹擾人類最後的判斷,這一點在V神的文章中也已經有詳細的分析。
能夠被歸入這一類目下的項目較多也較雜,包括AI chatbot、AI智能合約審計、AI代碼編寫、AI trading bot等等,可以說目前絕大多數的AI應用都正在這一類的初級水平,具有代表性的項目包括:
ChainGPT:ChainGPT依靠人工智能開發了一系列crypto工具,如chatbot、NFT生成器、新聞集合、智能合約生成與審計、交易助手、Prompt市場和AI跨鏈交換。但ChainGPT目前的發力方向在於項目孵化和Launchpad,目前已完成24個項目的IDO和4個Free Giveaways。
這是最令人激動的部分——讓AI能夠代替人類進行決策和行爲,你的AI將直接掌控你的錢包,代替你進行交易決策和行爲。在這一分類下,筆者認爲主要可以分爲三個層級:AI應用(尤其是以自主決策爲願景的應用,如AI自動化交易bot、AI DeFi收益Bot)、Autonomous Agent協議以及zkml/opml。
AI應用是對某一領域的問題進行具體決策的工具,它們積累了不同細分領域的知識和數據,依賴於根據細分問題而量身定制的AI Model開展決策。可以注意到,AI應用在本文中被同時歸入兩類:接口與規則,從開發願景來說,AI應用應成爲獨立決策的Agent,但目前無論是AI模型的有效性、集成AI的安全性,都無法滿足這一要求,甚至作爲接口都略微勉強,AI應用正處於非常早期的階段,具體項目在前文已有介紹,在此不做贅述。
Autonomous Agent被V神在第一類(AI作爲參與者)中提及,從遠期願景來說,本文將其歸爲第三類。Autonomous Agent利用大量數據和算法來模擬人類的思維和決策過程,並執行各種任務和交互。本文主要關注Agent的通信層、網絡層等基礎設施,這些協議定義了Agent的歸屬權,建立了Agent的身分、通信標準和通信方式,連接多個Agent應用,能夠協同進行決策和行爲。
zkML/opML:通過密碼學或經濟學的方法,保證經過了正確的模型推理過程而提供具有可信性的輸出。安全性問題對於將AI引入智能合約非常致命,智能合約依靠輸入產生輸出並自動化執行一系列功能,一旦AI作惡給予了錯誤的輸入,將會爲整個Crypto系統引入極大的系統性風險,因此zkML/opML和可能的一系列潛在解決方案,都是讓AI進行獨立行動和決策的基礎。
最後,三者構成AI作爲運行規則的三個基礎層次:zkml/opml作爲最底層的基礎設施,保證協議的安全性;Agent協議建立起Agent生態系統,能夠協同進行決策和行爲;AI應用,也是具體的AI Agent,將不斷提高在某一領域的能力,並實際進行決策和行動。
AI Agent在Crypto世界的應用是自然的,從智能合約到TG Bots再到AI Agents,加密世界正走向更高的自動化和更低的用戶門檻。智能合約雖然是通過不可篡改的代碼自動執行功能,但仍需要依賴外部觸發而喚醒,且無法自主運行和連續運行;TG Bots降低了用戶門檻,用戶不需要直接與加密前端交互,而是通過自然語言完成鏈上交互,但只能完成極爲簡單和具體的任務,依然無法實現用戶意圖爲中心的交易;AI Agents則具備一定的獨立決策能力,理解用戶的自然語言,並自主找到和組合起其他的Agent和鏈上工具,完成用戶指定的目標。
AI Agent正在致力於大幅提高加密產品的使用體驗,而區塊鏈也能夠助力AI Agent的運行更加去中心化、透明和安全,具體的幫助在於:
這一賽道的主要項目如下:
零知識證明目前有兩個主要應用方向:
同樣地,ZKP在機器學習中的應用同樣可以被分爲兩類:
筆者認爲目前對Crypto更爲重要的是推理驗證,我們在此對推理驗證的場景進行進一步闡述。從AI作爲參與者開始,到AI作爲世界的規則,我們希望將AI成爲鏈上流程的一部分,但AI模型推理計算成本過高,無法直接在鏈上運行,將這一過程放到鏈下,意味着我們需要忍受這一黑盒子帶來的信任問題——AI模型運行者是否篡改了我的輸入?是否使用了我指定的模型進行推理?通過將ML模型轉化成ZK電路,可以實現:(1)較小的模型上鏈,將小的zkML模型存儲到智能合約中,直接上鏈解決了不透明的問題;(2)在鏈下完成推理,同時生成ZK證明,通過在鏈上運行ZK證明來證明推理過程的正確性,基礎架構將包括兩個合約——主合約(使用ML模型輸出結果)和ZK-Proof驗證合約。
zkML還處於非常早期的階段,面臨着ML模型向ZK電路轉化的技術問題,以及極高的運算和密碼學開銷成本。和Rollup的發展路徑一樣,opML從經濟學的角度出發,成爲了另一種解決方案,opML使用Arbitrum 的 AnyTrust 假設,即每個主張至少有一個誠實節點,確保提交者或至少一個驗證者是誠實的。但OPML只能成爲推理驗證的替代方案,無法實現隱私保護。
目前的項目正在構建zkML的基礎設施,並在努力探索其應用,應用的建立同樣重要,因需要清楚地向加密用戶證明zkML中重要作用,證明最終價值能夠抵消巨大成本。在這些項目中,有些專注於與機器學習相關的ZK技術研發(如Modulus Labs),有些則是更通用的ZK基礎設施搭建,相關項目包括:
如果說前面三類更側重於AI如何賦能於Crypto,那麼“AI作爲目標”強調了Crypto對AI的幫助,即如何利用Crypto創造出更好的AI模型和產品,這或許包括多個評判標準:更高效、更精確、更去中心化等等。
AI包括三個核心:數據、算力和算法,在每一個維度,Crypto都在致力於爲AI提供更有效的助力:
大型科技公司對數據和算力的壟斷共同造成了對模型訓練過程的壟斷,閉源模型成爲大型企業獲利的關鍵。從基礎設施的角度,Crypto通過經濟手段激勵數據和算力的去中心化供應,同時通過密碼學的方法保證過程中的數據隱私,並以此爲基礎助力於去中心化的模型訓練,以實現更透明、更去中心化的AI。
去中心化數據協議主要以數據衆包的形式開展,激勵用戶提供數據集或數據服務(如數據標注)用於企業進行模型訓練,並開設Data Marketplace促進供需雙方的匹配,一些協議也正在探索通過DePIN激勵協議,獲取用戶的瀏覽數據,或利用用戶的設備/帶寬完成網路數據爬取。
Grass:被稱爲AI的去中心化數據層,本質上是一個去中心化網路抓取市場,並以此獲得數據來用於AI模型訓練。互聯網網站是一個重要的AI訓練數據來源,包括推特、谷歌、Reddit在內的許多網站的數據都具有重要價值,但這些網站正在不斷對數據爬取加以限制。Grass利用個人網路中未使用的帶寬,通過使用不同的IP地址來減少數據封鎖帶來的影響,來抓取公共網站中的數據,完成數據初步清理,成爲AI模型訓練企業和項目的數據源。目前Grass正處於Beta測試階段,用戶可提供帶寬獲取積分以領取潛在空投。
AIT Protocol:AIT Protocol是去中心化數據標注協議,旨在爲開發者提供高質量數據集用於模型訓練。Web3使得全球勞動力能夠快速接入網路,並通過數據標注獲得激勵,AIT的數據科學家將對數據進行預標注,隨後由用戶進行進一步處理,經過數據科學家檢查後,通過質量檢測的數據將提供給開發者。
除了上述數據提供和數據標注協議,曾經的去中心化存儲類基礎設施,如FIL、Arweave等也將爲更分散化的數據供給助力。
AI時代,算力的重要性不言而喻,不僅英偉達的股價日攀高峯,在Crypto世界,去中心化算力可以說是AI賽道炒作最熱烈的細分方向——在市值前200的11個AI項目中,做去中心化算力的項目就有5個(Render/Akash/AIOZ Network/Golem/Nosana),並在過去幾個月中收獲了高倍漲幅。在小市值的項目中也看到許多去中心化算力的平台出現,雖然剛剛起步,但伴隨着英偉達大會的浪潮,只要是與GPU沾邊,都快速收獲了一波大漲。
從賽道特點來看,這一方向項目的基本邏輯高度同質化——通過代幣激勵使得擁有閒置算力資源的人或企業提供資源,並由此大幅降低使用費用,建立起算力的供需市場,目前,主要的算力供應來自於數據中心、礦工(尤其在以太坊轉爲PoS後)、消費級算力以及與其他項目的合作。雖然同質化,但這是一個頭部項目擁有較高護城河的賽道,項目的主要競爭優勢來源於:算力資源、算力租賃價格、算力使用率以及其他技術優勢。這一賽道的龍頭項目包括Akash、Render、io.net和Gensyn。
根據具體業務方向,項目可以被粗分爲兩類:AI模型推理和AI模型訓練。由於AI模型訓練對算力和帶寬的要求遠高於推理,比分布式推理的落地難度更大,且模型推理的市場快速擴展,可預測的收入將在未來大幅高於模型訓練,因此目前絕大多數項目主攻推理方向(Akash、Render、io.net),主攻訓練方向的龍頭即爲Gensyn。其中,Akash和Render誕生較早,並非是爲AI計算而生,Akash最初用於通用計算,Render則主要應用於視頻和圖片渲染,io.net則爲AI計算專門設計,但在AI將算力需求提升了一個Level後,這些項目都已傾向於AI方面的開發。
最爲重要的兩個競爭指標依然來自於供應端(算力資源)和需求端(算力使用率)。Akash擁有282個GPU和超過2萬個CPU,已完成16萬次租賃,GPU網路的利用率爲50-70%,在這一賽道是一個不錯的數字。io.net擁有40272個GPU和5958個CPU,同時擁有Render的4318個GPU和159個CPU、FIL的1024個GPU的使用許可,其中包括約200塊H100和上千塊A100,目前已完成推理151,879次,io.net正在用極高的空投預期吸引算力資源,GPU的數據正在快速增長,需要等代幣上線後對其吸引資源的能力重新評估。Render和Gensyn則並未公布具體數據。此外,許多項目正在通過生態合作來提高自己在供應與需求端的競爭力,如io.net採用Render和FIL的算力來提高自己的資源儲備,Render建立了計算客戶端計劃(RNP-004),允許用戶通過計算客戶端——io.net、Nosana、FedMl、Beam,來間接接入Render的算力資源,從而快速從渲染領域過渡到人工智能計算。
此外,去中心化計算的驗證依然是一個問題——如何證明擁有算力資源的工作者正確地執行了計算任務。Gensyn正在嘗試建立這樣一個驗證層,通過概率學習證明、基於圖的精確定位協議以及激勵來保證計算的正確性,其中的驗證者和舉報者共同對計算進行檢查,因此Gensyn除了爲去中心化訓練提供了算力支持,其建立的驗證機制也具有獨特價值。位於Solana上的計算協議Fluence同樣增加了對計算任務的驗證,開發人員可以通過檢查鏈上提供商發布的證明來驗證其應用程序是否按預期運行以及計算是否正確執行。但現實的需求依然是”可行“大於”可信“,計算平台必須首先具有足夠的算力才有競爭的可能,當然對於出色的驗證協議來說,可以選擇接入其他平台的算力,成爲驗證層和協議層來發揮獨特作用。
距離Vitalik所描述的終極場景(下圖所示)還非常遙遠,我們目前還無法實現通過區塊鏈和加密技術創建一個可信任的黑盒AI,來解決對抗性機器學習的問題,將數據訓練到查詢輸出的整個AI運行過程進行加密處理是一筆非常大的開銷。但目前正在有項目嘗試通過激勵機制創建更好的AI模型,首先打通了不同模型之間封閉的狀態,創造了模型之間相互學習、協作和良性競爭的格局,Bittensor是其中最具代表性的項目。
Bittensor:Bittensor正在促進不同AI模型之間的組合,但值得注意的是,Bittensor本身不進行模型的訓練,而是主要提供AI推理的服務。Bittensor的32個子網專注於不同的服務方向,如數據抓取、文本生成、Text2Image等,在完成一項任務時,分屬不同方向的AI模型可以相互協作。激勵機制促進了子網之間、以及子網內部的競爭,目前獎勵以每塊1個TAO的速度發放,每日總計發放約7200個TAO代幣,SN0(根網路)中的64個驗證器根據子網性能,決定了這些獎勵在不同子網之間的分配比例,子網驗證器則通過對礦工的工作評價,決定在不同礦工之間的分配比例,由此表現更好的服務、表現更好的模型獲得更多激勵,促進了系統整體推理質量的提高。
從Sam Altman動向帶來ARKM和WLD的價格瘋漲,到英偉達大會帶飛一系列參會項目,很多人正在對AI賽道的投資理念發生調整,AI賽道究竟是MEME炒作還是技術革命?
除了少數名人題材(比如ARKM和WLD),AI賽道整體更像是”以技術敘事爲主導的MEME“。
一方面,Crypto AI賽道的整體炒作一定是與Web2 AI的進展緊密掛鉤的,OpenAI爲首的外部炒作將成爲Crypto AI賽道的導火索。另一方面,AI賽道的故事依然以技術敘事爲主,當然,這裏我們強調的是”技術敘事“而非”技術“,這就使得對AI賽道細分方向的選擇和項目基本面的關注依然重要,我們需要找到有炒作價值的敘事方向,也需要找到有中長期競爭力和護城河的項目。
從V神提出的四類結合可能中,可以看到的是敘事魅力和落地可能性的相互權衡。在以AI應用爲代表的第一類和第二類中,我們看到了許多GPT Wrapper,產品落地快但業務同質化程度也較高,先發優勢、生態系統、用戶數量和產品收入則成爲同質化競爭中可講的故事。第三類和第四類代表着AI與Crypto結合的宏大敘事,如Agent鏈上協作網路、zkML、去中心化重塑AI,都處於早期階段,具有技術創新的項目將會快速吸引資金,即使只是很早期的落地展示。
轉發原文標題:《Metrics Ventures研報 | 從V神文章出發,Crypto×AI有哪些值得關注的細分賽道?》
去中心化是區塊鏈所維護的共識,確保安全性是核心思想,而開源是從密碼學角度讓鏈上行爲具備上述特點的關鍵基礎。在過去幾年中,這個方式在區塊鏈的幾輪變革中是適用的,但是當人工智能參與其中後,情況發生一些變化。
試想通過人工智能來設計區塊鏈或者應用的架構,那麼模型就有開源的必要,但是如此一來,會暴露其在對抗性機器學習中的脆弱性;反之則喪失了去中心化性。 因此,我們有必要思考在當前區塊鏈或者應用中加入人工智能時,以何種方式,怎樣的深度去完成結合。
來源:DE UNIVERSITY OF ETHEREUM
在@ueth"> DE UNIVERSITY OF ETHEREUM 的 When Giants Collide: Exploring the Convergence of Crypto x AI一文中,闡述了人工智能和區塊鏈在核心特質上的差異。如上圖所示,人工智能的特點是:
區塊鏈在這5點上,和人工智能相比是完全相反的。 這也是Vitalik該文的真正論點,如果人工智能和區塊鏈結合,那麼誕生的應用在數據所有權,透明度,貨幣化能力,耗能成本等方面應作出怎樣的取舍,又需要誕生哪些基礎設施來保障二者的有效結合。
Vitalik按照上述準則以及自身的思考,將人工智能與區塊鏈結合而成的應用分爲4大類:
其中,前三種主要是AI引入Crypto世界的三種方式,代表了從淺到深的三種層次,根據筆者的理解,這種劃分代表了AI對人類決策的影響程度,並由此爲整個Crypto引入了不同程度的系統風險:
最後,第四類項目致力於利用Crypto的特性創造更好的人工智能,正如前文所說,中心化、低透明度、耗能、壟斷性和貨幣屬性弱,都可以天然地通過Crypto的屬性去中和。盡管許多人對Crypto能否對人工智能的發展產生影響力抱有懷疑,但通過去中心化的力量去影響現實世界一直是Crypto最迷人的敘事,這一賽道也憑藉其宏大構想成爲AI賽道炒作最熱烈的部分。
在AI參與的機制中,激勵的最終來源來自於人類輸入的協議。在AI成爲接口,甚至成爲規則之前,我們往往需要對不同AI的表現進行評估,使AI參與到一個機制中,最終通過一個鏈上機制獲得獎勵或受到懲罰。
AI作爲參與者,相比於作爲接口和規則來說,對用戶和整個系統的風險性基本可以忽略不計,可以說是AI開始深度影響用戶決策和行爲前的必經階段,因此人工智能與區塊鏈在這一層的融合所需要的成本和取舍相對較小,也是V神認爲現在具有高度可落地性的一類產品。
從廣義和實現程度上來說,現在的AI應用多屬於這一類別,比如AI賦能的trading bot和chatbot等,目前的落地程度還很難實現AI作爲接口甚至是規則的作用,用戶正在不同的bot中進行比較和逐步優化,加密用戶也尚未養成使用AI應用的行爲習慣。在V神的文章中,也將Autonomous Agent歸爲這一類。
但從狹義和遠期願景上來說,我們傾向於對AI應用或AI Agent進行更爲細致的劃分,因此在這一類目下,我們認爲具有代表性的細分賽道包括:
從某種程度上說,AI遊戲都可以被歸爲這個類別,玩家通過與AI交互,並訓練自己的AI角色,使得AI角色更符合個人的需求,如更貼合個人的喜好或者在遊戲機制中更具有戰鬥力和競爭力。遊戲是AI在切入現實世界前的一個過渡階段,也是目前落地風險性較低、最容易被普通用戶理解的一個賽道,標志性的項目如AI Arena、Echelon Prime、Altered State Machine等。
預測能力是AI進行未來決策和行爲的基礎,在AI模型被用於實際預測前,預測競賽在更高等級上對AI模型的表現進行比較,通過代幣爲數據科學家/AI模型提供激勵,這對於整個Crypto×AI的發展具有積極意義——通過激勵不斷開發效率和性能更強、更適合crypto世界的模型和應用,在AI對決策和行爲發揮更深刻影響前,創建出更優質、更安全的產品。正如V神所說,預測市場是一個強大的原語,可以拓展到更多其他類型的問題。這一賽道中的標志性項目包括:Numerai和Ocean Protocol。
Numerai:Numerai是一個已經運行了很久的數據科學競賽,數據科學家根據歷史的市場數據(由Numerai提供)訓練機器學習模型來預測股市,並質押模型和NMR代幣進行錦標賽,表現較好的模型將獲得NMR代幣激勵,較差模型的質押代幣則會被銷毀。截止2024年3月7日,共有6,433個模型被質押,協議共計向數據科學家提供了$75,760,979的激勵。Numerai正在激勵全球數據科學家合作來構建新型對沖基金,目前已發布的基金包括Numerai One和Numerai Supreme。Numerai的路徑:市場預測競賽→衆包預測模型→基於衆包模型的新型對沖基金。
Ocean Protocol:Ocean Predictoor正在關注預測,開始於加密貨幣走勢的衆包預測。玩家可以選擇運行Predictoor bot或Trader bot,Predictoor bot使用AI模型對下一個時間點(比如五分鍾後)的加密貨幣(如BTC/USDT)價格進行預測,並質押一定數量的$OCEAN,協議將根據質押量加權計算出全局預測,Traders購買預測結果並可以根據其進行交易,在預測結果準確率較高時,Traders可以從中獲利,預測錯誤的Predictoor將會被罰沒,而預測正確的則可以獲得這部分代幣和Traders的購買費用作爲獎勵。3月2日,Ocean Predictoor在媒體上公布了最新方向——World-World Model(WWM),開始探索對天氣、能源等現實世界的預測。
AI可以幫助用戶用簡單易懂的語言理解正在發生的事情,充當用戶在crypto世界的導師,並對可能的風險進行提示,以降低Crypto的使用門檻和用戶風險,提高用戶體驗。具體可實現的產品的功能很豐富,如錢包交互時的風險提示、AI驅動的意圖交易、能夠回答普通用戶crypto問題的AI Chatbot等等。對受衆羣體進行擴大,除了普通用戶,開發者、分析師等等在內的幾乎所有羣體,都將成爲AI的服務對象。
讓我們再次重申這些項目的共同點:尚未代替人類執行某些決策和行爲,但正在利用AI模型爲人類提供輔助決策和行爲的信息和工具。從這一層開始,AI作惡的風險已經開始暴露在系統中——可以通過提供錯誤的信息來幹擾人類最後的判斷,這一點在V神的文章中也已經有詳細的分析。
能夠被歸入這一類目下的項目較多也較雜,包括AI chatbot、AI智能合約審計、AI代碼編寫、AI trading bot等等,可以說目前絕大多數的AI應用都正在這一類的初級水平,具有代表性的項目包括:
ChainGPT:ChainGPT依靠人工智能開發了一系列crypto工具,如chatbot、NFT生成器、新聞集合、智能合約生成與審計、交易助手、Prompt市場和AI跨鏈交換。但ChainGPT目前的發力方向在於項目孵化和Launchpad,目前已完成24個項目的IDO和4個Free Giveaways。
這是最令人激動的部分——讓AI能夠代替人類進行決策和行爲,你的AI將直接掌控你的錢包,代替你進行交易決策和行爲。在這一分類下,筆者認爲主要可以分爲三個層級:AI應用(尤其是以自主決策爲願景的應用,如AI自動化交易bot、AI DeFi收益Bot)、Autonomous Agent協議以及zkml/opml。
AI應用是對某一領域的問題進行具體決策的工具,它們積累了不同細分領域的知識和數據,依賴於根據細分問題而量身定制的AI Model開展決策。可以注意到,AI應用在本文中被同時歸入兩類:接口與規則,從開發願景來說,AI應用應成爲獨立決策的Agent,但目前無論是AI模型的有效性、集成AI的安全性,都無法滿足這一要求,甚至作爲接口都略微勉強,AI應用正處於非常早期的階段,具體項目在前文已有介紹,在此不做贅述。
Autonomous Agent被V神在第一類(AI作爲參與者)中提及,從遠期願景來說,本文將其歸爲第三類。Autonomous Agent利用大量數據和算法來模擬人類的思維和決策過程,並執行各種任務和交互。本文主要關注Agent的通信層、網絡層等基礎設施,這些協議定義了Agent的歸屬權,建立了Agent的身分、通信標準和通信方式,連接多個Agent應用,能夠協同進行決策和行爲。
zkML/opML:通過密碼學或經濟學的方法,保證經過了正確的模型推理過程而提供具有可信性的輸出。安全性問題對於將AI引入智能合約非常致命,智能合約依靠輸入產生輸出並自動化執行一系列功能,一旦AI作惡給予了錯誤的輸入,將會爲整個Crypto系統引入極大的系統性風險,因此zkML/opML和可能的一系列潛在解決方案,都是讓AI進行獨立行動和決策的基礎。
最後,三者構成AI作爲運行規則的三個基礎層次:zkml/opml作爲最底層的基礎設施,保證協議的安全性;Agent協議建立起Agent生態系統,能夠協同進行決策和行爲;AI應用,也是具體的AI Agent,將不斷提高在某一領域的能力,並實際進行決策和行動。
AI Agent在Crypto世界的應用是自然的,從智能合約到TG Bots再到AI Agents,加密世界正走向更高的自動化和更低的用戶門檻。智能合約雖然是通過不可篡改的代碼自動執行功能,但仍需要依賴外部觸發而喚醒,且無法自主運行和連續運行;TG Bots降低了用戶門檻,用戶不需要直接與加密前端交互,而是通過自然語言完成鏈上交互,但只能完成極爲簡單和具體的任務,依然無法實現用戶意圖爲中心的交易;AI Agents則具備一定的獨立決策能力,理解用戶的自然語言,並自主找到和組合起其他的Agent和鏈上工具,完成用戶指定的目標。
AI Agent正在致力於大幅提高加密產品的使用體驗,而區塊鏈也能夠助力AI Agent的運行更加去中心化、透明和安全,具體的幫助在於:
這一賽道的主要項目如下:
零知識證明目前有兩個主要應用方向:
同樣地,ZKP在機器學習中的應用同樣可以被分爲兩類:
筆者認爲目前對Crypto更爲重要的是推理驗證,我們在此對推理驗證的場景進行進一步闡述。從AI作爲參與者開始,到AI作爲世界的規則,我們希望將AI成爲鏈上流程的一部分,但AI模型推理計算成本過高,無法直接在鏈上運行,將這一過程放到鏈下,意味着我們需要忍受這一黑盒子帶來的信任問題——AI模型運行者是否篡改了我的輸入?是否使用了我指定的模型進行推理?通過將ML模型轉化成ZK電路,可以實現:(1)較小的模型上鏈,將小的zkML模型存儲到智能合約中,直接上鏈解決了不透明的問題;(2)在鏈下完成推理,同時生成ZK證明,通過在鏈上運行ZK證明來證明推理過程的正確性,基礎架構將包括兩個合約——主合約(使用ML模型輸出結果)和ZK-Proof驗證合約。
zkML還處於非常早期的階段,面臨着ML模型向ZK電路轉化的技術問題,以及極高的運算和密碼學開銷成本。和Rollup的發展路徑一樣,opML從經濟學的角度出發,成爲了另一種解決方案,opML使用Arbitrum 的 AnyTrust 假設,即每個主張至少有一個誠實節點,確保提交者或至少一個驗證者是誠實的。但OPML只能成爲推理驗證的替代方案,無法實現隱私保護。
目前的項目正在構建zkML的基礎設施,並在努力探索其應用,應用的建立同樣重要,因需要清楚地向加密用戶證明zkML中重要作用,證明最終價值能夠抵消巨大成本。在這些項目中,有些專注於與機器學習相關的ZK技術研發(如Modulus Labs),有些則是更通用的ZK基礎設施搭建,相關項目包括:
如果說前面三類更側重於AI如何賦能於Crypto,那麼“AI作爲目標”強調了Crypto對AI的幫助,即如何利用Crypto創造出更好的AI模型和產品,這或許包括多個評判標準:更高效、更精確、更去中心化等等。
AI包括三個核心:數據、算力和算法,在每一個維度,Crypto都在致力於爲AI提供更有效的助力:
大型科技公司對數據和算力的壟斷共同造成了對模型訓練過程的壟斷,閉源模型成爲大型企業獲利的關鍵。從基礎設施的角度,Crypto通過經濟手段激勵數據和算力的去中心化供應,同時通過密碼學的方法保證過程中的數據隱私,並以此爲基礎助力於去中心化的模型訓練,以實現更透明、更去中心化的AI。
去中心化數據協議主要以數據衆包的形式開展,激勵用戶提供數據集或數據服務(如數據標注)用於企業進行模型訓練,並開設Data Marketplace促進供需雙方的匹配,一些協議也正在探索通過DePIN激勵協議,獲取用戶的瀏覽數據,或利用用戶的設備/帶寬完成網路數據爬取。
Grass:被稱爲AI的去中心化數據層,本質上是一個去中心化網路抓取市場,並以此獲得數據來用於AI模型訓練。互聯網網站是一個重要的AI訓練數據來源,包括推特、谷歌、Reddit在內的許多網站的數據都具有重要價值,但這些網站正在不斷對數據爬取加以限制。Grass利用個人網路中未使用的帶寬,通過使用不同的IP地址來減少數據封鎖帶來的影響,來抓取公共網站中的數據,完成數據初步清理,成爲AI模型訓練企業和項目的數據源。目前Grass正處於Beta測試階段,用戶可提供帶寬獲取積分以領取潛在空投。
AIT Protocol:AIT Protocol是去中心化數據標注協議,旨在爲開發者提供高質量數據集用於模型訓練。Web3使得全球勞動力能夠快速接入網路,並通過數據標注獲得激勵,AIT的數據科學家將對數據進行預標注,隨後由用戶進行進一步處理,經過數據科學家檢查後,通過質量檢測的數據將提供給開發者。
除了上述數據提供和數據標注協議,曾經的去中心化存儲類基礎設施,如FIL、Arweave等也將爲更分散化的數據供給助力。
AI時代,算力的重要性不言而喻,不僅英偉達的股價日攀高峯,在Crypto世界,去中心化算力可以說是AI賽道炒作最熱烈的細分方向——在市值前200的11個AI項目中,做去中心化算力的項目就有5個(Render/Akash/AIOZ Network/Golem/Nosana),並在過去幾個月中收獲了高倍漲幅。在小市值的項目中也看到許多去中心化算力的平台出現,雖然剛剛起步,但伴隨着英偉達大會的浪潮,只要是與GPU沾邊,都快速收獲了一波大漲。
從賽道特點來看,這一方向項目的基本邏輯高度同質化——通過代幣激勵使得擁有閒置算力資源的人或企業提供資源,並由此大幅降低使用費用,建立起算力的供需市場,目前,主要的算力供應來自於數據中心、礦工(尤其在以太坊轉爲PoS後)、消費級算力以及與其他項目的合作。雖然同質化,但這是一個頭部項目擁有較高護城河的賽道,項目的主要競爭優勢來源於:算力資源、算力租賃價格、算力使用率以及其他技術優勢。這一賽道的龍頭項目包括Akash、Render、io.net和Gensyn。
根據具體業務方向,項目可以被粗分爲兩類:AI模型推理和AI模型訓練。由於AI模型訓練對算力和帶寬的要求遠高於推理,比分布式推理的落地難度更大,且模型推理的市場快速擴展,可預測的收入將在未來大幅高於模型訓練,因此目前絕大多數項目主攻推理方向(Akash、Render、io.net),主攻訓練方向的龍頭即爲Gensyn。其中,Akash和Render誕生較早,並非是爲AI計算而生,Akash最初用於通用計算,Render則主要應用於視頻和圖片渲染,io.net則爲AI計算專門設計,但在AI將算力需求提升了一個Level後,這些項目都已傾向於AI方面的開發。
最爲重要的兩個競爭指標依然來自於供應端(算力資源)和需求端(算力使用率)。Akash擁有282個GPU和超過2萬個CPU,已完成16萬次租賃,GPU網路的利用率爲50-70%,在這一賽道是一個不錯的數字。io.net擁有40272個GPU和5958個CPU,同時擁有Render的4318個GPU和159個CPU、FIL的1024個GPU的使用許可,其中包括約200塊H100和上千塊A100,目前已完成推理151,879次,io.net正在用極高的空投預期吸引算力資源,GPU的數據正在快速增長,需要等代幣上線後對其吸引資源的能力重新評估。Render和Gensyn則並未公布具體數據。此外,許多項目正在通過生態合作來提高自己在供應與需求端的競爭力,如io.net採用Render和FIL的算力來提高自己的資源儲備,Render建立了計算客戶端計劃(RNP-004),允許用戶通過計算客戶端——io.net、Nosana、FedMl、Beam,來間接接入Render的算力資源,從而快速從渲染領域過渡到人工智能計算。
此外,去中心化計算的驗證依然是一個問題——如何證明擁有算力資源的工作者正確地執行了計算任務。Gensyn正在嘗試建立這樣一個驗證層,通過概率學習證明、基於圖的精確定位協議以及激勵來保證計算的正確性,其中的驗證者和舉報者共同對計算進行檢查,因此Gensyn除了爲去中心化訓練提供了算力支持,其建立的驗證機制也具有獨特價值。位於Solana上的計算協議Fluence同樣增加了對計算任務的驗證,開發人員可以通過檢查鏈上提供商發布的證明來驗證其應用程序是否按預期運行以及計算是否正確執行。但現實的需求依然是”可行“大於”可信“,計算平台必須首先具有足夠的算力才有競爭的可能,當然對於出色的驗證協議來說,可以選擇接入其他平台的算力,成爲驗證層和協議層來發揮獨特作用。
距離Vitalik所描述的終極場景(下圖所示)還非常遙遠,我們目前還無法實現通過區塊鏈和加密技術創建一個可信任的黑盒AI,來解決對抗性機器學習的問題,將數據訓練到查詢輸出的整個AI運行過程進行加密處理是一筆非常大的開銷。但目前正在有項目嘗試通過激勵機制創建更好的AI模型,首先打通了不同模型之間封閉的狀態,創造了模型之間相互學習、協作和良性競爭的格局,Bittensor是其中最具代表性的項目。
Bittensor:Bittensor正在促進不同AI模型之間的組合,但值得注意的是,Bittensor本身不進行模型的訓練,而是主要提供AI推理的服務。Bittensor的32個子網專注於不同的服務方向,如數據抓取、文本生成、Text2Image等,在完成一項任務時,分屬不同方向的AI模型可以相互協作。激勵機制促進了子網之間、以及子網內部的競爭,目前獎勵以每塊1個TAO的速度發放,每日總計發放約7200個TAO代幣,SN0(根網路)中的64個驗證器根據子網性能,決定了這些獎勵在不同子網之間的分配比例,子網驗證器則通過對礦工的工作評價,決定在不同礦工之間的分配比例,由此表現更好的服務、表現更好的模型獲得更多激勵,促進了系統整體推理質量的提高。
從Sam Altman動向帶來ARKM和WLD的價格瘋漲,到英偉達大會帶飛一系列參會項目,很多人正在對AI賽道的投資理念發生調整,AI賽道究竟是MEME炒作還是技術革命?
除了少數名人題材(比如ARKM和WLD),AI賽道整體更像是”以技術敘事爲主導的MEME“。
一方面,Crypto AI賽道的整體炒作一定是與Web2 AI的進展緊密掛鉤的,OpenAI爲首的外部炒作將成爲Crypto AI賽道的導火索。另一方面,AI賽道的故事依然以技術敘事爲主,當然,這裏我們強調的是”技術敘事“而非”技術“,這就使得對AI賽道細分方向的選擇和項目基本面的關注依然重要,我們需要找到有炒作價值的敘事方向,也需要找到有中長期競爭力和護城河的項目。
從V神提出的四類結合可能中,可以看到的是敘事魅力和落地可能性的相互權衡。在以AI應用爲代表的第一類和第二類中,我們看到了許多GPT Wrapper,產品落地快但業務同質化程度也較高,先發優勢、生態系統、用戶數量和產品收入則成爲同質化競爭中可講的故事。第三類和第四類代表着AI與Crypto結合的宏大敘事,如Agent鏈上協作網路、zkML、去中心化重塑AI,都處於早期階段,具有技術創新的項目將會快速吸引資金,即使只是很早期的落地展示。